WORKING NOTES ON FLOW EQUATIONS FOR CMPS

TOBIAS J. OSBORNE

Abstract. In these notes we record all the intermediate derivations for the flow equations approach for cMPS.

1. Introduction

Recall that our variational class is defined, in one dimension, for a system of length L in terms of the evolution of a continuously measured auxiliary system \mathcal{B}. This, in turn, is given by the propagator

\begin{equation}
U(L) = \mathcal{T} e^{i \int_0^L G(s) \, ds},
\end{equation}

where $G(s)$ is given by the limit $\lim_{n \to \infty} G_n(s)$, with

\begin{equation}
G_n(s) = K(s) + \sqrt{\epsilon} \sum_{j=1}^n \delta(s - j\epsilon)(i R(s) \otimes a_j^\dagger - i R^\dagger(s) \otimes a_j),
\end{equation}

and $\epsilon = L/n$. The system of n meters is referred to as $12 \cdots n$. In the continuum limit $n \to \infty$ we refer to this collection as \mathcal{A}. The propagator is clearly defined in terms of two one-parameter operators: (i) a hermitian path $K(s)$, $s \in [0, L]$; and (ii) a path of complex matrices $R(s)$, $s \in [0, L]$.

Our variational class (of the system+auxiliary system collection) is then defined by

\begin{equation}
|\Phi(L)\rangle = U|\Omega\rangle,
\end{equation}

where $|\Omega\rangle \equiv |\Omega\rangle_{A\mathcal{B}}$ is the vacuum state of the system+auxiliary system. We now make an important simplification: we assume translation invariance, which we impose by assuming $K(s) = K$ and $R(s) = R$, $s \in [0, L]$.

We want to solve the (real- or imaginary-time) dynamics for a system with hamiltonian H (we focus on imaginary-time evolution):

\begin{equation}
\frac{d}{d\beta} |\Phi(\beta)\rangle = -H \otimes I_{\mathcal{B}} |\Phi(\beta)\rangle.
\end{equation}

We are going to simulate this dynamics by allowing finding a path operators $K(\beta)$ and $R(\beta)$ which best approximates the dynamics.

As we know, the reduced density operator $\rho_\mathcal{B}(t)$ for the auxiliary system defines the quantum state of the quantum field. (From now on we drop the subscript \mathcal{B} on $\rho_\mathcal{B}(s)$; we understand henceforth, unless otherwise stated, that the symbol ρ is the state of the auxiliary system.)
system.) In order that physical observables arise from a legal quantum state we require that
\(\rho_3(t) \) satisfies the Lindblad equation

\[
\frac{d\rho(s)}{ds} = -i[K, \rho(s)] - \frac{1}{2} \left(R^\dagger R \rho(s) - 2R \rho(s) R^\dagger + \rho(s) R^\dagger R \right).
\]

At this point it becomes slightly more convenient to move to a different representation for the
state of our auxiliary system. This representation, known as the \textit{Jamiolkowski isomorphism}
within the quantum information literature, is simply just another notation to represent the
hilbert space of operators (with the \textit{hilbert-schmidt} inner product \((A, B) \equiv \text{tr}(A^\dagger B) \)) on a
hilbert space, and is defined as follows:

\[
A = \sum_{j,k=1}^{D} a_{jk} |j\rangle \langle k| \implies |A \rangle = \sum_{j,k=1}^{D} a_{jk} |j\rangle |k\rangle.
\]

It is easy to see that the operation of “multiplication on the left by \(A \)” , \(L_A(B) \equiv AB \), becomes, in this notation

\[
L_A(B) \mapsto A \otimes I |B \rangle.
\]

The operation of “multiplication on the right by \(A \)” , \(R_A(B) \equiv BA \), becomes, in this

\[
R_A(B) \mapsto I \otimes A^T |B \rangle.
\]

In terms of this new notation the Lindblad equation (1.5) becomes

\[
\frac{d}{ds} |\rho(s) \rangle = \left[-i \left(K \otimes I - I \otimes K^T \right) - \frac{1}{2} \left(R^\dagger R \otimes I - 2R \otimes R^\dagger + I \otimes R^T R \right) \right] |\rho(s) \rangle.
\]

Now we allow \(K \) and \(R \) to depend on an auxiliary parameter \(\beta \); we write

\[
M(\beta) \equiv -i \left(K(\beta) \otimes I - I \otimes K^T(\beta) \right) - \frac{1}{2} \left(R^\dagger(\beta) R(\beta) \otimes I - 2R(\beta) \otimes R^\dagger(\beta) + I \otimes R^T(\beta) R(\beta) \right)
\]

so that

\[
|\rho(t) \rangle = e^{tM(\beta)} |\rho(0) \rangle.
\]

Let’s make some comments on the generator \(M(\beta) \). When this operator is diagonalizable it is
known to have a spectral decomposition

\[
M(\beta) = S^{-1}(\beta) \left(\sum_{j=1}^{D} m_j(\beta) |j\rangle \langle j| \right) S(\beta),
\]

where the eigenvalues \(m_j(\beta) \) are assumed to be in arranged in decreasing real part, such that
\(m_1(\beta) = 0 \). Generically it is the case that \(\Re(m_2(\beta)) < 0 \) and

\[
\lim_{t \to \infty} e^{tM(\beta)} = S^{-1}(\beta) |1\rangle \langle 1| S(\beta) = |I\rangle \langle \rho(\beta)|,
\]

where

\[
|I \rangle = \sum_{j=1}^{D} |jj\rangle.
\]
To proceed with this calculation we notice that, in the limit $L \to \infty$, we can express the expectation value $\langle \Phi(\beta) | H | \Phi(\beta) \rangle$, for the Lieb-Liniger model in a relatively simple form:

\begin{equation}
E(\beta) = \langle \Phi(\beta) | H | \Phi(\beta) \rangle = \text{tr}(\{K(\beta), R(\beta)\} [K(\beta), R(\beta)] \rho(\beta)) + c \text{tr}(R^2(\beta) \rho(\beta) R^\dagger(\beta)^2),
\end{equation}

where $\rho(\beta)$ is the (unique) steady state of the Lindblad equation defining $|\Phi(\beta)\rangle$.

Now, to compute $E'(\beta)$ we need to compute $\frac{d\rho(\beta)}{d\beta}$ it is convenient to use the Jamiolkowski notation:

\begin{equation}
\frac{d\rho(\beta)}{d\beta} \leftrightarrow \frac{d}{d\beta}|\rho(\beta)\rangle.
\end{equation}

We next exploit the assumed fact that $|\rho(\beta)\rangle$ is the unique eigenvector of eigenvalue 0 of the operator

\begin{equation}
M(\beta) \equiv -i \left(K(\beta) \otimes \mathbb{1} - \mathbb{1} \otimes K^T(\beta)\right) - \frac{1}{2} \left(R^\dagger(\beta) R(\beta) \otimes \mathbb{1} - 2 R(\beta) \otimes R^\dagger(\beta) + \mathbb{1} \otimes R^T(\beta) R(\beta)\right).
\end{equation}

Realising this allows us to immediately compute the derivative using standard perturbation theory:

\begin{equation}
\frac{d}{d\beta}|\rho(\beta)\rangle = -\frac{\mathbb{1}}{M(\beta)} \frac{dM(\beta)}{d\beta} |\rho(\beta)\rangle + |\rho(\beta)\rangle \mathbb{1} \frac{dM(\beta)}{d\beta} |\rho(\beta)\rangle.
\end{equation}

3. Computation of ground-state properties via flow equations

In this section we show how to use the technology developed in the previous sections to calculate the ground-state properties for the Lieb-Liniger model via the flow-equations approach. Recall that this procedure works by solving for the derivatives of the parameters $K'(\beta)$ and $R'(\beta)$ defining the state of the quantum field by working out the direction which minimises the corresponding change in $E(\beta)$ the fastest. This is achieved by solving the following optimisation problem

\begin{equation}
\min_{K'(\beta), R'(\beta)} \frac{dE(\beta)}{d\beta} + \lambda \text{tr}(K'(\beta)^2) + \mu \text{tr}(R'(\beta) R'(\beta))
\end{equation}

such that $\text{tr}(R^\dagger(\beta) R(\beta) \rho(\beta)) = \varrho$,

where λ and μ are lagrange multipliers chosen to enforce the boundedness of the derivatives $K'(\beta)$ and $R'(\beta)$ and ϱ is the desired particle density. In order to ensure that the particle density remains constant (at say, $\varrho = 1$) we can impose the density constraint by adding a further lagrange multiplier, so that the K' and R' are given by the solution to

\begin{equation}
\min_{K'(\beta), R'(\beta)} \frac{dE(\beta)}{d\beta} + \lambda \text{tr}(K'(\beta)^2) + \mu \text{tr}(R'(\beta) R'(\beta)) + \nu \frac{d}{d\beta} \text{tr}(R^\dagger(\beta) R(\beta) \rho(\beta)).
\end{equation}

(We now drop the explicit dependence on β.) We thus study the lagrangian

\begin{equation}
L(K', R'; \lambda, \mu, \nu) = \frac{d}{d\beta} \text{tr} \left(\left[(Q, R) [Q, R] + c R^2 R^\dagger + \nu R^\dagger R \right] \rho \right) + \lambda \text{tr}(K'^2) + \mu \text{tr}(R'^\dagger R'),
\end{equation}
where $Q = -\frac{1}{2} R^\dagger R - i K$. Thus we are reduced to solving the \textit{unconstrained} hamiltonian whose image is $H = [Q, R]^\dagger [Q, R] + c R^\dagger R^2 + \nu R^\dagger R$ so that $H = H_{LL} + \nu H_D$, with $H_D = R^\dagger R$.

Writing $K = \sum_{j,k=1}^D K_{jk} |j\rangle \langle k|$ and $R = \sum_{j,k=1}^D R_{jk} |j\rangle \langle k|$, the equations for the extrema are given by

\begin{align*}
\frac{d}{dK_{jk}'} L(K', R'; \lambda, \mu, \nu) &= 0, \quad j, k = 1, 2, \ldots, D, \quad (3.4) \\
\frac{d}{dR_{jk}'} L(K', R'; \lambda, \mu, \nu) &= 0, \quad j, k = 1, 2, \ldots, D, \quad \text{and} \quad (3.5) \\
\frac{d}{d\nu} L(K', R'; \lambda, \mu, \nu) &= 0. \quad (3.6)
\end{align*}

(The extremal equations for λ and μ simply ensure that K' and R' are bounded.)

The next step is to explicitly calculate and solve (3.4), (3.5), and (3.6). Both (3.4) and (3.5) require that we calculate

\begin{align*}
(\text{I}) &= \frac{d}{d\beta} \left([Q, R]^\dagger [Q, R] + c R^\dagger R^2 + \nu R^\dagger R \right) \\
(\text{II}) &= \frac{d}{d\beta} \rho.
\end{align*}

For the term (I) we find

\begin{align*}
(\text{I}) &= [R^\dagger, Q'] C + [R^\dagger, Q'] C + C'^\dagger [Q', R] + C'^\dagger [Q, R'] + c R^\dagger R^2 + c R^\dagger R^\dagger R^2 + c R^\dagger R' R + c R^\dagger^2 R R' + \nu R^\dagger R + \nu R^\dagger R',
\end{align*}

where $C = [Q, R]$ and

\begin{align*}
Q' &= -\frac{1}{2} R^\dagger R - \frac{1}{2} R^\dagger R' - i K'. \quad (3.9)
\end{align*}

The second term is given, in Jamiolkowski notation, by (2.5):

\begin{align*}
(\text{II}) &= -\frac{1}{M} M' |\rho\rangle + |\rho\rangle \left\langle \frac{1}{M} M' |\rho\rangle, \quad (3.10)
\end{align*}

where the equation for M' is, likewise,

\begin{align*}
M' &= -i \left(K' \otimes I - I \otimes K'^T \right) - \\
&\quad \frac{1}{2} \left(R^\dagger R \otimes I + R^\dagger R' \otimes I - 2 R' \otimes R - 2 R \otimes R' + I \otimes R^T R + I \otimes R^T R' \right). \quad (3.11)
\end{align*}

We now turn to (3.4): we use the fact that

\begin{align*}
\frac{d}{dK_{jk}'} (\text{I}) &= i [R^\dagger, |j\rangle \langle k|] C - i C'^\dagger [|j\rangle \langle k|, R] \\
\text{and} \\
\frac{d}{dK_{jk}'} (\text{II}) &= -i \left(- I + |\rho\rangle \left\langle |\rho| \right. \right) \frac{1}{M} \left(|j\rangle \langle k| \otimes I - I \otimes |k\rangle \langle j| \right) |\rho\rangle, \quad (3.13)
\end{align*}
to find

\begin{equation}
\frac{d}{dR_{jk}}L(K', R'; \lambda, \mu, \nu) = \text{tr} \left[(i[R^\dagger, |j\rangle \langle k|] C - iC^\dagger |j\rangle \langle k|, R] \rho \right] - i\left(-\langle H | + \langle H |\rho \rangle \|I\| \right) \frac{I}{M} \left(|j\rangle \langle k| \otimes I - I \otimes |k\rangle \langle j| \right) |\rho\rangle + 2\lambda \text{tr}(|j\rangle \langle k| K') = 0,
\end{equation}

where $|\Xi\rangle = -|H\rangle + \langle \rho |H\rangle |\|I\|$.

By exploiting the cyclic rule of trace we can simplify this equation to

\begin{equation}
-2\lambda K' = (i[C\rho, R^\dagger] - i[R, \rho C^\dagger]) - i \text{tr}_2 \left(|\rho\rangle \langle \Xi | \frac{I}{M} \right) + i \text{tr}_1 \left(|\rho\rangle \langle \Xi | \frac{I}{M} \right)^T.
\end{equation}

Arbitrarily setting $\lambda = 1/2$ (which, without loss of generality, ensures that the derivative is bounded) we finally obtain

\begin{equation}
K' = -i[C\rho, R^\dagger] + i[R, \rho C^\dagger] + i \text{tr}_2 \left(|\rho\rangle \langle \Xi | \frac{I}{M} \right) - i \text{tr}_1 \left(|\rho\rangle \langle \Xi | \frac{I}{M} \right)^T.
\end{equation}

It is convenient, in the sequel, to separate $K' = K'_0 + \nu K'_1$ into two components: K'_0, which is the part independent of ν, and K'_1 which multiplies ν, where

\begin{equation}
K'_0 = -i[C\rho, R^\dagger] + i[R, \rho C^\dagger] + i \text{tr}_2 \left(|\rho\rangle \langle \Xi_0 | \frac{I}{M} \right) - i \text{tr}_1 \left(|\rho\rangle \langle \Xi_0 | \frac{I}{M} \right)^T,
\end{equation}

and

\begin{equation}
K'_1 = i \text{tr}_2 \left(|\rho\rangle \langle \Xi_1 | \frac{I}{M} \right) - i \text{tr}_1 \left(|\rho\rangle \langle \Xi_1 | \frac{I}{M} \right)^T,
\end{equation}

with

\begin{equation}
|\Xi_0\rangle = -|H_{LL}\rangle + \langle \rho |H_{LL}\rangle |\|I\|, \quad \text{and} \quad |\Xi_1\rangle = -|H_D\rangle + \langle \rho |H_D\rangle |\|I\|.
\end{equation}

We now turn to the calculation of (3.5). Similar to the calculation for K' we begin with

\begin{equation}
\frac{d}{dR_{jk}}(I) = [|k\rangle \langle j|, Q^\dagger] C - \frac{1}{2}[R^\dagger, |k\rangle \langle j|, R] C - \frac{1}{2} C^\dagger [R^\dagger, |k\rangle \langle j|, R] + c|k\rangle \langle j| R^\dagger R^2 + cR^\dagger |k\rangle \langle j| R^2 + \nu |k\rangle \langle j| R
\end{equation}

and

\begin{equation}
\frac{d}{dR_{jk}}(\Pi) = -\frac{1}{2} (-I + |\rho\rangle \langle I|) \frac{I}{M} \left(|k\rangle \langle j| R \otimes I - 2R \otimes |j\rangle \langle k| + I \otimes R^\dagger |j\rangle \langle k| \right) |\rho\rangle,
\end{equation}
This can be simplified, using the cyclic rule of trace, to
\begin{equation}
\frac{d}{dR_{jk}} L(K', R'; \lambda, \mu, \nu) = \text{tr} \left[\left(\langle k | R | k \rangle - \frac{1}{2} R \langle k | R | k \rangle C - \frac{1}{2} C^\dagger \langle k | R | k \rangle R + c \langle k | R^1 R^2 + c R^1 \langle k | R^2 + \nu | k \rangle \langle R | R \rangle \rho \right) - \frac{1}{2} \left(-\langle H | + \langle H | \rho \rho \rangle \right) \frac{I}{M} \left(\langle k | R \otimes I - 2 R \otimes | k \rangle \langle k | + I \otimes R^T | k \rangle \right) | \rho \rangle + \mu \text{tr}(|k \rangle \langle k | R' \rangle) = 0.
\end{equation}

This can be further reduced to
\begin{equation}
- \mu \text{tr}(|k \rangle \langle k | R') = \text{tr} \left[|k \rangle \langle j | \left([Q^\dagger, C \rho] - \frac{1}{2} R [C \rho, R^1] - \frac{1}{2} R [R, \rho C^\dagger] + c R^1 R^2 \rho + c R^1 \rho R^1 + \nu R \rho \right) \right] - \frac{1}{2} \text{tr} \left([k | R \otimes I - 2 R \otimes | j \rangle \langle j | + I \otimes R^T | j \rangle \right) | \rho \rangle \langle \Xi | \frac{I}{M} \right].
\end{equation}

which becomes, after setting \(\mu = 1 \),
\begin{equation}
R' = -[Q^\dagger, C \rho] + \frac{1}{2} R [C \rho, R^1] + \frac{1}{2} R [R, \rho C^\dagger] - c R^1 R^2 \rho - c R^2 \rho R^1 - \nu R \rho + \frac{1}{2} R \text{tr} \left(| \rho \rangle \langle \Xi | \frac{I}{M} \right) - \text{tr} \left(R \otimes I | \rho \rangle \langle \Xi | \frac{I}{M} \right) \right)^T + \frac{1}{2} R \text{tr} \left(| \rho \rangle \langle \Xi | \frac{I}{M} \right)^T.
\end{equation}

As before, as in the case of \(K' \), it is convenient to separate \(R' = R'_0 + \nu R'_1 \) into two pieces, where
\begin{equation}
R'_0 = -[Q^\dagger, C \rho] + \frac{1}{2} R [C \rho, R^1] + \frac{1}{2} R [R, \rho C^\dagger] - c R^1 R^2 \rho - c R^2 \rho R^1 + \frac{1}{2} R \text{tr} \left(| \rho \rangle \langle \Xi_0 | \frac{I}{M} \right) - \text{tr} \left(R \otimes I | \rho \rangle \langle \Xi_0 | \frac{I}{M} \right) \right)^T + \frac{1}{2} R \text{tr} \left(| \rho \rangle \langle \Xi_0 | \frac{I}{M} \right)^T,
\end{equation}

and
\begin{equation}
R'_1 = -R \rho + \frac{1}{2} R \text{tr} \left(| \rho \rangle \langle \Xi_1 | \frac{I}{M} \right) - \text{tr} \left(R \otimes I | \rho \rangle \langle \Xi_1 | \frac{I}{M} \right) \right)^T + \frac{1}{2} R \text{tr} \left(| \rho \rangle \langle \Xi_1 | \frac{I}{M} \right)^T.
\end{equation}
The final equation (3.6) ensures that the derivatives preserve the particle density: this can be solved for ν as follows

\[
\frac{d}{d\nu} L(K', R'; \lambda, \mu, \nu) = \text{tr} \left[(R_0' + \nu R_1')^\dagger R \rho \right] + \text{tr} \left[R_1^\dagger (R_0' + \nu R_1') \rho \right] + \text{tr} \left[R_1^\dagger R (\rho_0 + \nu \rho_1') \right] = 0,
\]
where, in Jamiołkowski notation,

\[
|\rho_0\rangle = -\frac{1}{M} M_0^\dagger |\rho\rangle + |\rho\rangle \langle \frac{1}{M} M_0^\dagger |\rho\rangle
\]
and

\[
|\rho_1\rangle = -\frac{1}{M} M_1^\dagger |\rho\rangle + |\rho\rangle \langle \frac{1}{M} M_1^\dagger |\rho\rangle,
\]
with

\[
M_0' = -i \left(K_0' \otimes \mathbb{I} - \mathbb{I} \otimes K_0'^T \right) - \frac{1}{2} \left(R_0' R \otimes \mathbb{I} + R_1^\dagger R_0 \otimes \mathbb{I} - 2R_0' \otimes \mathbb{I} - 2R_1^\dagger \otimes \mathbb{I} + \mathbb{I} \otimes R_0'^T \mathbb{I} + \mathbb{I} \otimes R_1'^T \mathbb{I} \right).
\]

and

\[
M_1' = -i \left(K_1' \otimes \mathbb{I} - \mathbb{I} \otimes K_1'^T \right) - \frac{1}{2} \left(R_1^\dagger R \otimes \mathbb{I} + R_1' R_0 \otimes \mathbb{I} - 2R_1' \otimes \mathbb{I} - 2R_0' \otimes \mathbb{I} + \mathbb{I} \otimes R_1'^T \mathbb{I} + \mathbb{I} \otimes R_0'^T \mathbb{I} \right).
\]

This allows us to obtain the following solution for ν:

\[
\nu = -\frac{\text{tr} \left[R_0^\dagger R \rho \right] + \text{tr} \left[R_1^\dagger R_0' \rho \right] + \text{tr} \left[R_1^\dagger R_0' \rho \right]}{\text{tr} \left[R_0^\dagger R \rho \right] + \text{tr} \left[R_1^\dagger R_0' \rho \right] + \text{tr} \left[R_1^\dagger R_0' \rho \right]}.
\]

With this expression for ν we now have the complete set of first-order nonlinear differential equations for K and R:

\[
K' = f(K, R)
\]
\[
R' = g(K, R),
\]
where

\[
f(K, R) = -i[C\rho, R^\dagger] + i[R, \rho C^\dagger] + i \text{tr}_2 \left(|\rho\rangle \langle \Xi | \frac{\mathbb{I}}{M} \right) - i \text{tr}_1 \left(|\rho\rangle \langle \Xi | \frac{\mathbb{I}}{M} \right)^T
\]
and

\[
g(K, R) = -[Q^\dagger, C\rho] + \frac{1}{2} R[C\rho, R^\dagger] + \frac{1}{2} R[R, \rho C^\dagger] - cR^\dagger R^2 \rho - cR^2 \rho R^\dagger - \nu R \rho + \frac{1}{2} R \text{tr}_2 \left(|\rho\rangle \langle \Xi | \frac{\mathbb{I}}{M} \right) - \text{tr}_1 \left(R \otimes \mathbb{I} |\rho\rangle \langle \Xi | \frac{\mathbb{I}}{M} \right) + \frac{1}{2} R \text{tr}_1 \left(|\rho\rangle \langle \Xi | \frac{\mathbb{I}}{M} \right)^T,
\]
and $\nu \equiv \nu(K, R)$ is given by (3.35). These differential equations can be numerically integrated using standard methods, eg., the Runge-Kutta 4th order method.

Wissenschaftskolleg zu Berlin, 14193 Berlin, Germany
E-mail address: tobias.osborne@rhul.ac.uk