Directional derivative as vectors

Let \((v^1, v^2, \ldots, v^n) \in \mathbb{R}^n\). This defines a directional derivative at a point \(p \in \mathbb{R}^n\) as follows. Suppose \(f\) is a function from \(\mathbb{R}^n \to \mathbb{R}\) and define

\[
\nabla f(p) = \frac{\partial}{\partial x^i} f(x^i) \bigg|_{x^i = p^i}
\]

Conversely, given \((v^1, v^2, \ldots, v^n)\), we obtain a vector \(w \in \mathbb{R}^n\).

Further, directional derivatives at \(p\) form a vector space.

Note: \((v^1, v^2, \ldots, v^n)\) denotes

1. \(\nabla (af + bg) = a \nabla f + b \nabla g\) \(\forall a, b \in \mathbb{R}\)
2. \(\nabla (fg) = f(p) \nabla g + g(p) \nabla f\) (Leibniz property)

Notation: \(\mathcal{F}(\mathbb{R})\) set of all \(C^\infty\) functions from \(\mathbb{R}^n \to \mathbb{R}\)

Idea: define a vector space \(V_p\) associated to point \(p\) to be set of all maps \(\nabla: \mathcal{F}(\mathbb{R}) \to \mathbb{R}\) which obey (1) & (2).

\(\mathbb{R}_x\)

Ex. (a) Convince yourself if \(h \in \mathcal{F}(\mathbb{R})\) is constant then \(\nabla h = 0\), using only (1) & (2).

(b) Prove \(V_p\) is a vector space.

Have we created a monster?! \(\dim(V_p) = \infty\) !

Mean: let \(M\) be an \(n\)-dimensional (smooth) manifold. Let \(p \in M\) and let \(V_p\) denote “tangent space at \(p\)” above.

Then \(\dim(V_p) = n\)

Notation/definition.
Let \(\psi : \mathcal{O} \to U \subset \mathbb{R}^n \) be a chart with \(p \in \mathcal{O} \),
if \(f \in \mathcal{F}(\mathcal{O}) \) then \(f \circ \psi : U \subset \mathbb{R}^n \to \mathbb{R} \) is \(C^\infty \).

Define for \(i = 1, \ldots, n \)
\[
\chi_i (f) = \left(\frac{\partial}{\partial x_i} (f \circ \psi) \right) |_{\psi(p)}
\]
where \((x_1, \ldots, x^n) \) are the coordinates of \(\mathbb{R}^n \).

Ex. \(\chi_i \) so defined are tangent vectors (i.e., elements of \(\mathfrak{v}_b \)).

Proof: Now suppose \(F : \mathbb{R}^n \to \mathbb{R} \) is \(C^\infty \). Then for all \(a = (a_1, \ldots, a^n) \) \(\exists \) \(C^\infty \) functions \(H_a : \mathbb{R}^n \to \mathbb{R} \) s.t. \(\forall x \in \mathbb{R}^n \)
\[
F(x) = F(a) + \sum_{a_i = 1}^n (x^n - a^n) H_{a_i}(x)
\]
with \(H_{a_i}(a) = \frac{\partial}{\partial x_i} |_{x = a} \).

(Hint: See bonus problem: prove the statement.)

Let \(F(x) = (f \circ \psi)(x) \) and \(a = \psi(p) \). Then by (6.7)
we have for all \(q \in \mathcal{O} \)
\[
f(q) = f(p) + \sum_{\mu = 1}^n \left((x^n \circ \psi)(q) - (x^n \circ \psi)(p) \right) H_{a_\mu}(\psi(q))
\]
Suppose \(v \in \mathfrak{v}_\mu \). Apply \(\sigma \) to \(f \)
\[
\sigma(v) = \mathcal{V}(f(p) + \sum_{\mu = 1}^n \left((x^n \circ \psi)(q) - (x^n \circ \psi)(p) \right) H_{a_\mu}(\psi(q)))
\]
\[
\mathcal{V}(H_{a_\mu}(\psi(p)))
\]
\[
\mathcal{V}(\nabla_x x^\mu \psi - x^\mu \nabla_x \psi) \]

Introduction to general relativity Page 2
\[v = \sum_{\mu} v^\mu X^\mu = \sum_{\mu} v^\mu \left(\frac{\partial \psi^1}{\partial x^\mu} \right) \psi(\mathbf{r}) \]

\[\Rightarrow \quad v(f) = \sum_{\mu} v^\mu X^\mu(f) \]

The basis \(\{X_\mu | \mu = 1, \ldots, n\} \) of \(V_\mathbf{r} \) is called the coordinate basis, often denoted

\[X_\mu = \frac{\partial}{\partial x^\mu} \left. \right|_{\mathbf{r}} \]

Suppose we had chosen a different chart \(\psi' \). We would have coord. basis \(\{X'_\nu \} \).

Chain rule (over)

\[X^\mu = \sum_{\nu} \frac{\partial x^\mu}{\partial x'^\nu} \left. \right|_{\psi} \]

where \(x'^\nu \) denotes \(\nu \)-th component of \(\psi' \circ \psi^{-1} \)

Given a tangent vector in basis \(X_\mu \):

\[v = \sum_{\mu} v^\mu X^\mu = \sum_{\nu} v'_{\nu} \left(\frac{\partial \psi^1}{\partial x'^\nu} \right) \psi(\mathbf{r}) \]

\[\Rightarrow \quad v'_{\nu} = \sum_{\mu} v^\mu \left(\frac{\partial \psi^1}{\partial x'^\nu} \right) \]

Vector transformation law.
Vector transformation law.

Definition: A smooth curve \(C \) on a manifold \(M \) is a \(C^\infty \) map \(C : \mathbb{R} \to M \) (or a viewed \(f \in C \)).

\[
C : t \to \gamma(t)
\]

To each \(p \in M \) on \(C \) we associate a tangent vector \(T(\gamma) \) as follow: set \(f(t) = \gamma(t) \)

\[
T(f) = \left. \frac{d}{dt} (f \circ C) \right|_t = \sum_{\mu} 2 \frac{d}{dt} (f \circ \gamma) (X^\mu) \left(\frac{dx^\mu}{dt} \right) = \sum_{\mu} \frac{dx^\mu}{dt} X^\mu (f)
\]

where \(x^\mu \cdot (f \circ C) = x^\mu (t) \).

This expansion works for any coord. basis. Components of \(T^\mu = \frac{dx^\mu}{dt} \).

We call \(V_p \) the tangent space at \(p \).

\[\bigcup_{p \in M} V_p = TM \text{ tangent space for } M. \]

Warning: although \(\dim(V_p) = \dim(V_q) \), \(\forall p,q \in M \), and \(V_p \cong V_q \), these isomorphisms are not natural. No standard way to choose two isomorphism \(\Rightarrow \) Isomorphism could be confused. To get “good” choice need extra data!

Definition: a tangent field \(\tau \) on a manifold \(M \) is an assignment of a tangent vector \(\tau_p \in V_p, \forall p \in M \). We say \(\tau \) is smooth if \(\forall f \in \mathcal{F}(M), \tau(f) \) is a \(C^\infty \) function.

Lemma: The coord. basis fields \(X^\mu \) are smooth.

Proof: \(X^\mu (f)(p) = \sum_{\mu} 2 (f \circ \gamma) (X^\nu) \left. \frac{dx^\nu}{dt} \right|_{\gamma(p)} \) is \(C^\infty \) function.

Since an arbitrary tangent vector \(\tau \) is a linear combination of \(X^\mu : \tau \text{ smooth } \Rightarrow \text{ its components } \tau^\mu \in \mathcal{F}(M) \).
Velocity field \(\nu \) is tangent vector field

Solution to equations of motion is a smooth curve \(C \)

\[T(f) = \nu(f) \]