Let \(p \in M \) be a point in a manifold \(M \). \(V_p \): tangent space at \(p \). Study behavior of \(v^i \in V_p \), \(\epsilon^i \in V^*_p \) etc. under change of coordinates of \(M \).

1. Dual of \(V_p \): \(V^*_p \): cotangent space; elements of \(V^*_p \) are called covariant vectors. Given basis

\[
e^i = \frac{\partial}{\partial x^i} \quad \text{formally define dual basis}
\]

\[
e^i(v_j) = \delta^i_j
\]

\[
\Rightarrow \quad dx^i(\frac{\partial}{\partial x^j}) = \delta^i_j \quad \Box
\]

\(dx^i \): linear function of tangent vectors defined by \(\Box \)

Change of coordinate system:

\[
u'^i = \sum_{r=1}^n v^r \frac{\partial x'^i}{\partial x^r}
\]

(\(\text{Chw transformation law} \))

Let \(\omega \in V^*_p \)

\[
\omega = \sum_{r=1}^n \omega^r \frac{\partial}{\partial x^r}
\]

Apply \(\omega \) to \(v \).

\[
\omega(v) = \omega \left(\sum_{r=1}^n v^r \frac{\partial}{\partial x^r} \right) = \sum_{r=1}^n v^r \omega^r \left(\frac{\partial}{\partial x^r} \right)
\]

\[
= \sum_{r=1}^n \omega(v^r) \frac{\partial}{\partial x^r}
\]

\[
= \sum_{r=1}^n \omega^r \frac{\partial}{\partial x^r}
\]

\[\omega^r = \omega^r \frac{\partial}{\partial x^r} \quad \text{covariant vector transformation law} \]

In general, for a tensor \(T \in \mathcal{S}(r,l) \),
\[T = \sum_{\nu} T^\nu_\mu \left(\nu \right)_{\mu} \otimes (v^\nu)^* \]

\[\nu \mu = (\nu_1 \ldots \nu_k) \quad \gamma = (v_1 \ldots v_k) \]

\[v^\nu = \frac{\partial}{\partial x^1} \otimes \frac{\partial}{\partial x^2} \otimes \ldots \otimes \frac{\partial}{\partial x^n} \]

\[(v^\nu)^* = dx^1 \otimes dx^2 \otimes \ldots \otimes dx^n \]

Components of \(T \) in new coord system: \(\frac{\partial}{\partial x^1} \)

\[T^{\nu'}_{\mu'} = \sum_{\nu \mu} T^{\nu \mu} \left(\nu' \right)_{\mu'} \otimes (v^\nu)^* \]

\[\Rightarrow \text{Tensor transformation law} \]

A collection of numbers \(T^\nu_\mu \) transforming like \(\otimes \) is classically called a tensor (field).

A smooth tensor field \(T \) of type \((\nu, \mu)\) is one for which

\[T(\omega_1 \ldots \omega_k; v_1 \ldots v_\mu) \text{ is smooth for all} \]

\[\omega \in \Gamma \left(\mathfrak{R}^k \right) \text{ is smooth if} \]

\[\omega \text{ smooth} \]

Examples: (i) Currents and densities in SR.

Let \(M = \mathbb{R}^{1,3} \).

\[\delta j(N) \text{ & charge } q_j \]

\(N \) particles: \(j = 1, \ldots, N \)

Density (of charge) \(\Sigma (x, t) = \sum_{j=1}^{N} q_j \delta^{(5)}(x - x_j(t)) \) (Dirac delta function)

Current

\[j(x, t) = \sum_{j=1}^{N} q_j \delta^{(5)}(x - x_j(t)) \frac{dx_j(t)}{dt} \]

Define a four vector \(J^\mu \) by setting

\[J = \begin{pmatrix} \mathbf{E} \\ \mathbf{0} \end{pmatrix} \]

Ex. argue that \(J^\mu \) is a vector \((n, V_n)\) field under change of coordinates via Lorentz transformations.
of coordinates via Lorentz transformations

\[x'^{j} = \Lambda^{j}_{\ i} x^{i} \]

(ii) Energy-momentum tensor \(T_{\mu}^{\nu} \). Let \(M = \mathbb{R}^{1,3} \). Consider a collection \(N \) particles with energy-momentum four vectors

\[p_{j}^{\nu} \quad j = 1, \ldots, N \]

The density of \(\mu \)-component \(p_{\mu}^{\nu}(x) \) is defined to be

\[T_{\mu}^{\nu}(x) = \sum_{j=1}^{N} p_{j}^{\mu}(x) \delta^{(4)}(x-x_{j}(t)) \]

Correspondingly, correct

\[T_{\mu}^{\nu}(x) = \sum_{j=1}^{N} p_{j}^{\mu}(x) \frac{dx_{j}^{\nu}}{dt} \delta^{(4)}(x-x_{j}(t)) \]

Combine to a single formula

\[T_{\mu}^{\nu}(x) = \sum_{j=1}^{N} p_{j}^{\mu}(x) \frac{dx_{j}^{\nu}(t)}{dt} \delta^{(4)}(x-x_{j}(t)) \]

(Here \(x^{0} = t \)) Since

\[p_{j}^{0} = E_{j} \frac{dx_{j}^{0}}{dt} \]

we have

\[T_{\mu}^{\nu}(x) = \sum_{j=1}^{N} \left(p_{j}^{\mu} \frac{dx_{j}^{\nu}}{dt} - p_{j}^{\nu} \frac{dx_{j}^{\mu}}{dt} \right) \delta^{(4)}(x-x_{j}(t)) \]

\[\Rightarrow \quad T_{\mu}^{\nu} \text{ is symmetric ; i.e. } T_{\mu}^{\nu} = T_{\nu}^{\mu} \]

Writing

\[T_{\mu}^{\nu}(x) = \int dx^{4} \sum_{j=1}^{N} p_{j}^{\mu} \frac{dx_{j}^{\nu}}{dt} \delta^{(4)}(x-x_{j}(t)) \]

argue (ex), under Lorentz transforms \(\xi^{\mu} = \Lambda^{\mu}_{\ \nu} x^{\nu} \)

\[T_{\mu}^{\nu} = \Lambda^{\mu}_{\ \alpha} \Lambda^{\nu}_{\ \beta} T_{\alpha \beta} \]

\(\left(\Lambda^{\mu}_{\ \alpha} = \frac{\partial x_{\mu}}{\partial x^{\alpha}} \right) \)

\(T \) is a tensor of type \((2,0)\).

(iii) The metric tensor

A metric tensor \(g \) is a one-field of type \((0,2)\), which is symmetric and non-degenerate, i.e.,

\[g(v_{i}, v_{j}) = g(v_{j}, v_{i}) \]

and

\[g(v_{i + 1}, v_{i - 1}) = g(v_{i}, v_{i}) \]
\[g(u, v) = 0 \quad \forall u \neq v, \quad v_i = 0 \]

A metric is the extra data we need to supply us with a notion of infinitesimal length:

\[\text{infinitesimal displacement} \quad \Rightarrow \quad \text{tangent vector} \]

\[\text{"infinitesimal squared distance"} \quad \Rightarrow \quad \text{quadratic function of tangent vector} \]

Choose coordinate basis \(\frac{\partial}{\partial x^i} \): expand \(g \).

\[g = \sum_{\mu \nu} g_{\mu \nu} \, dx^\mu \otimes dx^\nu \quad (= ds^2) \]

We often omit \(\otimes \) sign:

\[ds^2 = g = \sum_{\mu \nu} g_{\mu \nu} \, dx^\mu \, dx^\nu \]

A metric actually supplies us with extra data of a binary product on \(V_p \), \(V_p \) on:

\[(v, w)_p = \sum_{\mu \nu} g_{\mu \nu} \left(dx^\mu \otimes dx^\nu \right) (v, w) \]

\[= \sum_{\mu \nu} g_{\mu \nu} \left(dx^\mu (v) \, dx^\nu (w) \right) \]

\[= \sum_{\mu \nu} g_{\mu \nu} \, v^\mu \, w^\nu \]

\[\Rightarrow \quad v = \sum \frac{v^\mu}{\partial x^\mu} \]

From Schmidt procedure: orthonormal basis \(v_i \) for \(V_p \).

\[(v_\mu, v_\nu) = g(v_\mu, v_\nu) = \delta_\mu^\nu \]

where \(\delta_\mu^\nu = \delta_{\pm 1} \)

\[\Rightarrow \quad \text{prove this} \]

The number of \(\pm 1 \) is independent of ortho. basis –> signature of \(g \)

\[A \text{ metric } g \text{ with } S \neq \pm 1 \text{, } V_m \text{ is Riemannian} \]

\(g \) is positive definite. The metric of spacetime has signature \((-1, +1, +1, +1) \)

\[A \text{ metric } g \text{ is simultaneously interpreted as a } (0, 2) \]

\[\text{tensor and also as a multilinear map from } V_p \times V_p \rightarrow R \]

\[\text{also as a linear map from } V_0 \rightarrow V^*, \text{ or } V \rightarrow g(\cdot, v) \]
also as a linear map from \(V_p \) to \(V_p^* \) induced via

\[
 v \mapsto g(\cdot, v) = \omega
\]

What is this?

\[
 g(\cdot, v) : V_p \to \mathbb{R} \\
 v \in V_p^*
\]

This map is 1 to 1 & onto and gives us a canonical basis-independent correspondence between vectors & dual vectors.

Abstract index notation

Suppose \(T \in \mathcal{S}^{(k,l)} \).

Think \(T \) a multilinear map, for \((V_p^*)^k \otimes V_l \to \mathbb{R} \).

Can specify \(T \) via its components in a basis \(T^{\alpha_1 \cdots \alpha_k}_{\beta_1 \cdots \beta_l} \).

Often it is enough just to know which arguments of \(T \) take vectors & or dual vectors. Capture this by labelling each argument with a lower case latin letter.

Superscript indices label contravariant indices &

Subscript indices - a covariant index, eg.

\[
 T^{ab}_{cd}
\]

denotes a \((2,2)\) tensor. Here lower case latin letters label arguments & their type (not component with respect to...)

\(\alpha, \beta \)

"Basic"