Introduction to general relativity: abstract index notation; curvature

03 May 2021 08:15

\[T \in J(k,l) \] (at least) two ways to think about

(i) \[T \in V^*_p \otimes V^*_p \otimes \cdots \otimes V^*_p \otimes V^*_p \otimes \cdots V^*_p \] (a vector in a vector space)

(ii) \[T : V^*_p \otimes \cdots \otimes V^*_p \otimes V^*_p \otimes \cdots V^*_p \to \mathbb{R} \] (is a linear map from a vector space to \(\mathbb{R} \))

In way (ii) we think \(T \) as a function with \(k \) indices/arguments from \(\otimes_k V^*_p \) and \(l \) indices/arguments from \(\otimes_l V^*_p \).

\[T(\cdot, \cdot, \cdots, \cdot, \cdot, \cdots, \cdot) \in \mathbb{R} \]

Evaluation

\[T(w, u_2, \cdots, u_k, v_2, \cdots, v_l) \]
\[\in V^*_p \]
\[\in V^*_p \]

A TN: a way to specify the type of a tensor by naming these entries.

\[T(\cdot, \cdot, \cdots, \cdot, \cdot, \cdots, \cdot) \to \mathbb{R} \]

To specify the type as follows

\[T_{abc} \] → not components, they label entries

\[\text{def} \]
This says: a tensor which takes 3 arguments from V^* & 3 arguments from V.

The actual components of T with respect to a coordinate system x^1, x^2 are

$$
\sum_{\nu_1, \nu_2, \nu_3} \frac{\partial}{\partial x^{\nu_1}} \frac{\partial}{\partial x^{\nu_2}} \frac{\partial}{\partial x^{\nu_3}} T_{\nu_1 \nu_2 \nu_3}^{\nu_1 \nu_2 \nu_3} dx^{\nu_1} \otimes dx^{\nu_2} \otimes dx^{\nu_3}
$$

for each choice of ν_1, ν_2, ν_3, ν_1, ν_2, ν_3 this is a function of M.

Certain tensor operations can be expressed compactly using

Aini:

Contraction: if $T_{a_1 \ldots a_k}^{b_1 \ldots b_l} \in \mathcal{S}(k, l)$

then

$$
\delta_{ij} \cdot T = T_{a_1 \ldots a_k}^{b_1 \ldots b_l} \quad \text{if } c \text{ is in the } i \text{th entry}
$$

$$
\delta_{ij} \cdot T = T_{b_1 \ldots b_l}^{a_1 \ldots a_k} \quad \text{if } c \text{ is in the } j \text{th entry}
$$

What type of tensor do we have now? $\mathcal{S}(k, l) \subset \mathcal{S}(k+1, l-1)$

Aini: $T_{a_1 \ldots a_k}^{b_1 \ldots b_l}$ demand implicitly that

T transforms as a tensor of type $\mathcal{S}(k, l)$ under change of coordinate basis.

$T \in \mathcal{S}(k, l)$ is really in $\mathcal{A}_{k, l}$ an infinite list of tensors, one for each pair $p \in M$.

Outer products: $\forall T_{a_1 \ldots a_k}^{b_1 \ldots b_l} \in \mathcal{S}(k, l) \& S_{c_1 \ldots c_m}^{d_1 \ldots d_n} \in \mathcal{S}(m, n)$
Outer products: \(T^{a_1 \ldots a_n} b \in \mathcal{J}(n,1) \) & \(s^{i_1 \ldots i_k} \in \mathcal{J}(k,1) \)

Then \(A \in N \) for \(\text{trace outer product} \) defined to be:

\[
T^{a_1 \ldots a_n} b \cdot s^{i_1 \ldots i_k} \in \mathcal{J}(n+k,1)
\]

Metric: \(g \in \mathcal{J}(0,2) \) then \(A \in N \):

\[
g_{ab}
\]

The inverse of \(g \):

Form its metric inverse \(g^{-1} \in \mathcal{J}(2,0) \)

\[
(g^{-1})^{ab} = g_{ba} \in \mathcal{J}(2,0)
\]

Raising/lowering: Apply \(g \) to vector \(\mathbf{v} \):

\[
g \rightarrow g_{ab} \quad \mathbf{v} \rightarrow g \mathbf{v}
\]

(1) Outer product:

\[
g_{ab} v^c
\]

(2) Covariant:

\[
g_{ab} v^c \rightarrow \mathbf{e}_{a}, \quad g_{ab} v^c \in \mathcal{J}(0,1)
\]

\[
A \in N: \quad v^a \rightarrow g_{ab} v^c = \nabla_a \mathbf{v} \in \mathcal{J}(0,1)
\]

\[
\mathbf{v}^a \rightarrow \nabla_a \mathbf{v} \quad (\text{really stands for } g_{ab} \nabla_a v^b)
\]

Lemma:

\[
g^{ab} g_{bc} = \delta^a_c
\]

Proof: \(\Rightarrow e_{a} (g^{-1} \otimes g) \quad \Rightarrow g^{-1} g = I \)

\[
I = A \in N: \quad \delta^a_c
\]

Generalized raising/lowering: Let \(T^{abc} \in \mathcal{J}(3,3) \)

\[
A \in N: \quad g_{aa'} T^{abc} \Rightarrow T_{a'bc} \Rightarrow \mathcal{J}(2,4)
\]
\[g_{ab} \cdot T^{bc} \text{ def } = T_{a}^{bc} \text{ def } = 1 \begin{pmatrix} 2 & 4 \end{pmatrix} \]

Notation is consistent with repeated applications of \(g \) & \(g^{-1} \).

\[T^{abc} \text{ def } = g_{a}^{a'} g_{b}^{b'} T^{d'bc} \text{ def } = S_{a}^{a'} T^{d'bc} \text{ def } = T^{abc} \text{ def } \]

Subspaces of symmetric / anti-symmetric tensors

If \(T, T' \in \mathcal{S}(k) \),

\[T + T' \in \mathcal{S}(4,k) \]

\[T_{a}^{\cdots a} u_{b} \cdots b_{c} + T_{a}^{\cdots a} u_{b} \cdots b_{c} \]

Definition

\[T_{(ab)} \equiv \frac{1}{2} \left(T_{ab} + T_{ba} \right) \]

\[T_{(ab)} \equiv \frac{1}{2} \left(T_{ab} - T_{ba} \right) \]

\[T_{a b c} \text{ def } = T^{a b c} \]

\[T_{b a c} \text{ def } = T^{b a c} \]

Definition

for \(T_{a_{n-1} \cdots a_{2}} \in \mathcal{S}(0,n) \):

\[T_{\{a_{1} \cdots a_{n}\}} \equiv \frac{1}{n !} \sum_{\pi \in S(n)} T_{a_{\pi 1} \cdots a_{\pi n}} \]

\[T_{\{a_{1} \cdots a_{n}\}} \equiv \frac{1}{n !} \sum_{\pi \in S(n)} E(\pi) T_{a_{\pi 1} \cdots a_{\pi n}} \]

\[E(\pi) = \begin{cases} 1 & \text{ if } \pi \text{ is a product of } \sigma \text{ and } \sigma^{-1} \text{ of transpositions} \\ 0 & \text{ otherwise} \end{cases} \]

Commutator notation:

\[[a_{1} b_{1} \cdots a_{n} b_{n}] = \frac{1}{n!} \left(T_{a_{1} b_{1} \cdots a_{n} b_{n}} + T_{a_{1} b_{1} \cdots a_{n} b_{n}} - T_{a_{1} b_{1} \cdots a_{n} b_{n}} - T_{a_{1} b_{1} \cdots a_{n} b_{n}} \right) \]

Introduction to general relativity Page 4
A totally antisymmetric tensor of type $(0,2)$ is called a differential 2-form.

Curvature: Spacetime is not embedded.

We want an intrinsic notion of curvature.

If \mathcal{M} were embedded in \mathbb{R}^k, it is "easy" to see if \mathcal{M} is curved.

We need a proxy for curvature: capture curvature by noticing that in flat manifolds we can move vectors around "in a parallel fashion" independent of path chosen.

On curved embedded manifold, eg surface of sphere.

Curvature = dependence on path chosen of parallel transport.

Parallel transport: Let \mathcal{M} be a manifold with no additional structure. It turns out to be impossible.
to define a natural notion of parallel transport

Problem: we want to move a vector from \(V_p \) at \(p \) to \(V_q \) at \(q \) in a "parallel in way as possible".

\(\Rightarrow \) no natural way to compare elements of \(V_p \) and \(V_q \).

(Or even of \(V_p \) and \(V_{p+\delta p} \)).

In Euclidean space \(\mathbb{R}^n \) we take a vector at \(p \) and
swiff (using additive structure) to \(q = p + \delta p \) allows
us to define differences of vectors \(\nabla^p \frac{\partial}{\partial x^1} \equiv v_p \)

\[
\frac{\partial}{\partial x^1} \xrightarrow{\delta x^1} \nabla^p \left(\cdots , x^1 + \delta x^1, \cdots \right) - \nabla^p \left(\cdots , x^1 \right)
\]

defined at \(V_q = p + \delta p \)

We assume parallel transported vector of \(v \rightarrow q \)
has same components as \(v \) at \(p \).

Heuristic approach:

We need additional data, a parallel transporter \(U_q: V_p \rightarrow V_q \).

where \(U_q \) is a smooth path connecting \(p \) and \(q \).

If you had the data of a parallel transporter \(U_q \)
you can compare tangent vectors at \(p \) and \(q \).

Let \(v \in V_p \), \(w \in V_q \) then

define "\(v \) at \(q \)" to be

\[
U_q w \in V_q, \quad w \in V_q
\]
Demand U_x is a linear transformation of vector spaces. What do we need to specify U_x?

\[\Gamma U : (p, x - x') \times V \rightarrow V \]

Let's work infinitesimally: let $x \in V$.

Suppose p has components x^i in a chart ψ.

Consider q near p (infinitesimally close).

In chart ψ:

\[\psi(q) = x + \Delta x \]

Let Y be a smooth path connecting p to q.

(\text{in chart } \psi: \psi \circ Y). Demand for

\[\tilde{U} = U_x \circ Y \quad \text{that components satisfy} \]

(i) \[\tilde{v}^m - v^m = \Delta x^m \]

(ii) \[(\tilde{v}^m + v^m) = \tilde{u}^m + u^m \]

We can satisfy both (i) and (ii) if we take

(\text{w}):

\[\tilde{v}^m = \hat{v}^m - \hat{v}^m \]

\[\hat{v}^m = \Gamma_{x, x'} \]

\[\Gamma_{x, x'} \quad \Delta x^m \]

\[\text{original component} \]

\[\text{connection coefficient} \]

\[\hat{v}^m = v^m + \Delta x^m \]

\[\text{we need these} \]

\[\text{for each pair } x \text{ in chart} \]

\[\text{chart} \]
Jet all this looks coordinate dependent; look for an \textit{intrinsic} way to define this.

\textbf{Note:} to every infinitesimal motion of parallel transport \(u^\alpha \Rightarrow \text{get derivative-type operator for vectors} \)

\[
\nabla_v \left(\frac{v^\mu}{\partial x^\nu} \right) = \lim_{\Delta x^\mu \to 0} \frac{v^\mu(x + \Delta x) - v^\mu(x)}{\Delta x^\nu} \frac{2}{\partial x^\nu} = \left(\frac{\partial v^\mu}{\partial x^\nu} + \Gamma^\mu_{\nu \lambda} v^\lambda \right) \frac{2}{\partial x^\nu}
\]