Length of c (w.r.t. g_{ab}):

$$L = \int (g_{ab} T^a T^b)^{1/2} \, dt$$

where T^a is the tangent to c, t is curve parameter.

I assume that our metric g has signature $(+,+,\ldots,+)$.

For metric with signature $(-,+,\ldots,+)$, a curve c is said to be **timelike** if

$$g_{ab} T^a T^b < 0$$

everywhere along curve; **null** if

$$g_{ab} T^a T^b = 0$$

and **spacelike** if

$$g_{ab} T^a T^b > 0$$

Everywhere along c.

For timelike curve c define the proper time τ via

$$\tau = \int \sqrt{-g_{ab} T^a T^b} \, dt$$

If a curve c changes from eg, timelike \Rightarrow spacelike,

⇒ length is not defined.

Since, for a geodesic the tangent vector T^a is parallel transported along curve itself, its norm

$$(T^a, T^b) = g_{ab} T^a T^b$$

cannot change ⇒ a geodesic cannot change from null to timelike etc.
\(\text{Change in norm:} \quad (T^a \nabla_a) \text{ norm} = (T^a \nabla_a)(g_{ab} T^b T^a) \)
\[= \left(T^a \nabla_a g_{ab} \right) (T^b T^a) + g_{ab} \left(T^a \nabla_a T^b \right) + g_{ab} T^a \nabla_a T^b \]
\[= 0 \]

\(\text{L (k=1) is reparameterization invariant:} \)

Suppose we chose \(\text{SLT} \), instead of \(t \), to parameterize

C. New tangent vector (ex.)

\[s^a = \frac{dt}{ds} T^a \]

The length \(L \) defined w.r.t. \(s \) is

\[L = \int \sqrt{g_{ab} s^a s^b} ds = \int \sqrt{g_{tt} T^t T^t} \cdot \frac{dt}{ds} ds = L \]

Claim: geodesics extremize length of curve joining two points \(p \) and \(q \).

Suppose \(p, q \) are in a common chart \(\psi: \mathbb{M} \to \mathbb{R}^n \).

Assume \(M \) is spacelike.

\[(\ell) = \int_a^b \sqrt{\sum_{\mu \nu} g_{\mu \nu} \frac{dx^\mu}{dt} \frac{dx^\nu}{dt}} \, dt \]

where \(C(a) = p \), \(C(b) = q \) are end points.

Green curve is an infinitesimal variation of \(\psi(x) \)

\[x^\mu(t) \quad \longrightarrow \quad x^\mu(t) + 8x^\mu(t) \]

where \(8x^\mu(t) = 8x^\mu(t) - 0 \)

\[\ell(x + 8x) = \ell(x) + 8\ell(t) \]

How does the length of \(t \) \(C = x + 8x \) change?

\[(\delta\ell) = \int_a^b \left(\sum_{\mu \nu} g_{\mu \nu} \frac{dx^\mu}{dt} \frac{dx^\nu}{dt} \right)^{1/2} \left\{ \dot{\mu} \delta x^\mu + \frac{1}{2} \sum_{\mu \nu} \frac{\partial g_{\mu \nu}}{\partial x^\rho} \dot{\rho} \delta x^\mu \dot{\nu} \right\} \, dt \]

Assume we have chosen a parametrization which so that

\[\frac{ds}{dt} \quad \text{is scalar} \]

\(\text{Curve} \quad \underbrace{\in}_{\psi} \quad \text{number} \)
Assume we have chosen a parametrization which so that
\[g_{ab} T^a T^b = 1 \]

Extremality:
\[S_t = 0 \]

\[A \frac{\partial}{\partial x^a} \]

\[0 = - \sum_a g_{\mu \nu} \frac{d^2 x^\mu}{dt^2} - \sum_a \frac{\partial g_{\mu \nu}}{\partial x^a} \frac{dx^\mu}{dt} \frac{dx^\nu}{dt} + \int \cdots \frac{\partial g_{\mu \nu}}{\partial x^a} \frac{dx^\mu}{dt} \frac{dx^\nu}{dt} \]

\[\Rightarrow \text{This is the geodesic equation.} \]

A curve extremizes the length \(\Rightarrow \) it is a geodesic.

A similar derivation shows that geodesic equation can be obtained by varying extremizing Lagrangian

\[L = \sum_{\mu \nu} g_{\mu \nu} \frac{dx^\mu}{dt} \frac{dx^\nu}{dt} \]

\[\Rightarrow \text{This can give a very efficient way to calculate} \]

\[\Gamma \left(\frac{d^2 x^\mu}{dt^2} \right) = 0 \]

Extremum vs. maximum.

For Lorentz signature manifolds \(M \) a curve (timelike) joining two points may have arbitrarily small proper time

\[\text{has smaller proper time} \]

If a curve (timelike) of greatest proper time exists it
must be a timelike geodesic. Note a given geodesic for \(p \to q \) need not maximize proper time.

Curvature

Path-dependence of parallel transport of a vector from \(V_0 \to V_1 \) gives an intrinsic proxy for curvature of \(M \).

Riemann curvature tensor \equiv measure of failure of successive parallel transport operations to commute.

Start by studying action $\nabla_a V_0$ on an arbitrary and vector field ω_c. Suppose $f \in \mathcal{F}(\mathbb{R})$ & consider

$$
\nabla_a V_0 (f \omega_c) = \nabla_a (\omega_c \nabla_0 f + f \nabla_0 \omega_c) = (\nabla_a \nabla_0 f) \omega_c + (\nabla_0 f)(\nabla_a \omega_c) + (\nabla_0 (\nabla_a f)) \omega_c + f \nabla_a \nabla_0 \omega_c
$$

Consider

$$(\nabla_a \nabla_0 - \nabla_0 \nabla_a) (f \omega_c) = f (\nabla_a \nabla_0 - \nabla_0 \nabla_a) \omega_c \quad \text{(true for } f \in \mathcal{F}(\mathbb{R}))$$

Thus $(\nabla_a \nabla_0 - \nabla_0 \nabla_a) \omega_c$ only depends on value of ω_c at p,

So

$$(\nabla_a \nabla_0 - \nabla_0 \nabla_a) : (\omega_c) \to \mathcal{F}(\mathbb{R}),$$

We thus obtain $R_{abc}^d \in \mathcal{F}(\mathbb{R})$ such that $\forall \omega_c \in \mathcal{F}(\mathbb{R})$

$$R_{abc}^d \omega_c = (\nabla_a \nabla_0 - \nabla_0 \nabla_a) \omega_c$$

$R_{abc}^d \equiv$ Riemann curvature tensor.

Relate R_{abc}^d to failure of successive parallel transport.

Consider a loop starting at $p \in M$ defined by a 2D surface S through p. Let coordinates of S be (s^1, s^2) with $(s^1, s^2) \equiv (0, 0)$ at p. The loop is then defined by

$$(0, 0) \to (0, s^2) \to (0, s^1, s^2) \to (s^1, 0) \to (s^1, s^1, 0) \to (0, s^2).$$

Let V^a be an arbitrary vector at p, and parallel transport it around loop. Suppose $\omega_c \in \mathcal{F}(0, 1)$ is arbitrary.
Let \(v^a \) be an arbitrary vector at \(p \) and parallel transport it around loop. Suppose \(\omega_a \in \mathcal{F}(0,1) \) is arbitrary.

Consider \(v^a \omega_a \in \mathcal{F}(0,1) \).

The change \(\delta_1 \) in \(v^a \omega_a \) along \(i_1 \) is

\[
\delta_1 = \Delta t \left(T^b \nabla_b (v^a \omega_a) \right)_{(\Delta t, 0)} \left(\Delta t, 0 \right)
\]

\[
= \Delta t \left(T^a v^a \nabla_a \omega_a \right)_{(\Delta t, 0)} \left(\Delta t, 0 \right) \quad (v^a \text{ is parallel})
\]

Here \(T^a \) is the tangent vector to curve with constant \(s \).

Similarly, we obtain

\[
\delta_3 = -\Delta t \left(T^a v^a \nabla_a \omega_a \right)_{(\Delta t, 0)} \left(\Delta t, 0 \right)
\]

Combine \(\delta_1 + \delta_3 \):

\[
\delta_1 + \delta_3 = \Delta t \left(T^a v^a \nabla_a \omega_a \right)_{(\Delta t, 0)} \left((\Delta t, 0) \right)
\]

Note: \(\delta_1 + \delta_3 \to 0 \) as \(\Delta s \to 0 \). Also \(\delta_2 + \delta_4 \to 0 \) as \(\Delta s \to 0 \).

So \(\delta_1 + \delta_2 + \delta_3 + \delta_4 = 0 \) to first order in \((\Delta s, \Delta t) \).

Parallel transport around loop is path-independent to first order.

To get 2nd order dependence consider parallel transport of \(v^a \) and \(T^b \nabla_b \omega_a \) along \(t = \Delta t \).

To first order \(v^a \) at \((\Delta s, \Delta t/2)\) is equal to \(v^a \) at \((0, \Delta t)\).

The quantity \(T^b \nabla_b \omega_a \) at \((\Delta s, \Delta t/2)\) differs from \(T^b \nabla_b \omega_a \) at \((0, \Delta t/2)\) parallel transported to \((\Delta s, \Delta t/2)\).
\[\delta \frac{\partial}{\partial x^c} \]

where \(\delta^e \) is tangent to curve of constant \(t \). Substituting (\(\star \)) into \(\delta_1 + \delta_2):

\[\delta_1 + \delta_2 = -\Delta t \delta v^a S^c \nabla_c (T^b \nabla_b \omega_a) \quad \text{(*)} \]

(\(\text{similar for } \delta_3 + \delta_4 \))

Add together (\(\star \))

\[\delta (\omega_a) = \delta s \Delta t \quad 1 \quad \Delta t \quad \nabla^a (T^c \nabla_c (S^b \nabla_b \omega_a - \frac{S^b}{\nabla_b (T^c \nabla_c \omega_a - T^b \nabla_b \omega_c) \nabla_c \omega_a}) \]

\[= \Delta t \quad \nabla^a \quad T^c \nabla_c (\nabla_c \omega_a - \nabla_b \omega_c) \nabla_c \omega_a \]

\[= \Delta t \quad \nabla^a \quad 1 \quad \Delta t \quad \nabla^a \quad R^{a c b d} \quad \omega_d \]

Here we used the fact that

\[\nabla^a \omega_a = \omega^a \nabla_a \omega^b - \omega^b \nabla_a \omega^b = 0 \]

for coordinate vector fields \(\omega^a = \frac{2}{\partial x^a}, \quad \omega^b = \frac{2}{\partial t} \)

This variation \(\delta (\omega_a) \) can hold for all \(\omega_a \) only if (to 2nd order in \(\Delta t \))

\[\delta \omega^a = \Delta t \quad \nabla^a \quad T^c \nabla_c \quad R^{a c b d} \quad \omega_d \]